Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 11(13): 1914-1924, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32538079

RESUMO

Synaptic neurotransmission has recently been proposed to function via either a membrane-independent or a membrane-dependent mechanism, depending on the neurotransmitter type. In the membrane-dependent mechanism, amphipathic neurotransmitters first partition to the lipid headgroup region and then diffuse along the membrane plane to their membrane-buried receptors. However, to date, this mechanism has not been demonstrated for any neurotransmitter-receptor complex. Here, we combined isothermal calorimetry measurements with a diverse set of molecular dynamics simulation methods to investigate the partitioning of an amphipathic neurotransmitter (dopamine) and the mechanism of its entry into the ligand-binding site. Our results show that the binding of dopamine to its receptor is consistent with the membrane-dependent binding and entry mechanism. Both experimental and simulation results showed that dopamine favors binding to lipid membranes especially in the headgroup region. Moreover, our simulations revealed a ligand-entry pathway from the membrane to the binding site. This pathway passes through a lateral gate between transmembrane alpha-helices 5 and 6 on the membrane-facing side of the protein. All in all, our results demonstrate that dopamine binds to its receptor by a membrane-dependent mechanism, and this is complemented by the more traditional binding mechanism directly through the aqueous phase. The results suggest that the membrane-dependent mechanism is common in other synaptic receptors, too.


Assuntos
Dopamina , Simulação de Dinâmica Molecular , Sítios de Ligação , Membrana Celular/metabolismo , Dopamina/metabolismo , Bicamadas Lipídicas/metabolismo , Ligação Proteica , Transmissão Sináptica
2.
Neuroscience ; 384: 214-223, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859975

RESUMO

Lipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT-membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT-membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. Meanwhile, the extracellular leaflet is relatively rich in biologically relevant anionic gangliosides such as monosialotetrahexosylganglioside (GM1), yet the role of gangliosides in NT-membrane association is not clear. Here, we explored the role of GM1 in modulating the binding of dopamine and histamine (as amphipathic/cationic NTs) as well as acetylcholine (as a hydrophilic/cationic NT) with the post-synaptic membrane surface. Atomistic molecular dynamics simulations and free energy calculations indicated that GM1 fosters membrane association of histamine and dopamine. For acetylcholine, this effect was not observed. The in silico results suggest that gangliosides form a charge-based vestibule in front of the post-synaptic membrane, attracting amphipathic NTs to the vicinity of the membrane. The results also stress the importance to understand the significance of the structural details of NTs, as exemplified by the GM1-acetylcholine interaction. In a larger context, the NT-membrane adherence, coupled to lateral diffusion in the membrane plane, is proposed to improve neurotransmission efficiency by advancing NT entry into the membrane-embedded ligand-binding sites.


Assuntos
Acetilcolina/metabolismo , Membrana Celular/metabolismo , Dopamina/metabolismo , Gangliosídeo G(M1)/metabolismo , Histamina/metabolismo , Animais , Sítios de Ligação , Simulação de Dinâmica Molecular , Transmissão Sináptica/fisiologia
3.
ACS Chem Neurosci ; 8(6): 1242-1250, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28165217

RESUMO

In this study, the dopamine-lipid bilayer interactions were probed with three physiologically relevant ion compositions using atomistic molecular dynamics simulations and free energy calculations. The in silico results indicate that calcium is able to decrease significantly the binding of dopamine to a neutral (zwitterionic) phosphatidylcholine lipid bilayer model mimicking the inner leaflet of a presynaptic vesicle. We argue that the observed calcium-induced effect is likely in crucial role in the neurotransmitter release from the presynaptic vesicles docked in the active zone of nerve terminals. The inner leaflets of presynaptic vesicles, which are responsible for releasing neurotransmitters into the synaptic cleft, are mainly composed of neutral lipids such as phosphatidylcholine and phosphatidylethanolamine. The neutrality of the lipid head group region, enhanced by a low pH level, should limit membrane aggregation of transmitters. In addition, the simulations suggest that the high calcium levels inside presynaptic vesicles prevent even the most lipophilic transmitters such as dopamine from adhering to the inner leaflet surface, thus rendering unhindered neurotransmitter release feasible.


Assuntos
Cálcio/metabolismo , Dopamina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...